Gaps and Dualities in Heyting Categories

نویسندگان

  • J. Nešetřil
  • A. Pultr
  • C. Tardif
چکیده

We present an algebraic treatment of the correspondence of gaps and dualities in partial ordered classes induced by the morphism structures of certain categories which we call Heyting (such are for instance all cartesian closed categories, but there are other important examples). This allows to extend the results of [14] to a wide range of more general structures. Also, we introduce a notion of combined dualities and discuss the relation of their structure to that of the plain ones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dualities and Dual Pairs in Heyting Algebras

We extract the abstract core of finite homomorphism dualities using the techniques of Heyting algebras and (combinatorial) categories.

متن کامل

Dualities for Equational Classes of Brouwerian Algebras and Heyting Algebras

This paper focuses on the equational class S„ of Brouwerian algebras and the equational class L„ of Heyting algebras generated by an »-element chain. Firstly, duality theories are developed for these classes. Next, the projectives in the dual categories are determined, and then, by applying the dualities, the injectives and absolute subretracts in Sn and L„ are characterized. Finally, free prod...

متن کامل

Optimal natural dualities for varieties of Heyting algebras

The techniques of natural duality theory are applied to certain finitely generated varieties of Heyting algebras to obtain optimal dualities for these varieties, and thereby to address algebraic questions about them. In particular, a complete characterisation is given of the endodualisable finite subdirectly irreducible Heyting algebras. The procedures involved rely heavily on Priestley duality...

متن کامل

Functor category dualities for varieties of Heyting algebras

Let A be a 4nitely generated variety of Heyting algebras and let SI(A) be the class of subdirectly irreducible algebras in A. We prove that A is dually equivalent to a category of functors from SI(A) into the category of Boolean spaces. The main tool is the theory of multisorted natural dualities. c © 2002 Elsevier Science B.V. All rights reserved. MSC: Primary: 06D20; 06D50; secondary: 08C05; ...

متن کامل

Dually quasi-De Morgan Stone semi-Heyting algebras II. Regularity

This paper is the second of a two part series. In this Part, we prove, using the description of simples obtained in Part I, that the variety $mathbf{RDQDStSH_1}$ of regular dually quasi-De Morgan Stone semi-Heyting algebras of level 1 is the join of the variety generated by the twenty 3-element $mathbf{RDQDStSH_1}$-chains and the variety of dually quasi-De Morgan Boolean semi-Heyting algebras--...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003